id | pepsi_placement | pepsi_chosen |
---|---|---|
14 | 1 | 1 |
51 | 1 | 0 |
80 | 0 | 0 |
90 | 0 | 0 |
92 | 0 | 0 |
Das GLM
Sommersemester 2024
In der klassischen Statistikausbildung (auch bei uns) als Rezeptesammlung:
Fokus auf Unterschieden und Spezifika statt auf Gemeinsamkeiten
Viele Verfahren sind aber mindestens funktional, oft auch mathematisch äquivalent!
There has been little attempt to understand the influence on children of branded products that appear in television programs and movies. A study exposed children of two different age groups (6–7 and 11–12) in classrooms to a brief film clip. Half of each class was shown a scene from Home Alone that shows Pepsi Cola being spilled during a meal. The other half was shown a similar clip from Home Alone but without branded products. All children were invited to help themselves from a choice of Pepsi or Coke at the outset of the individual interviews.
id | pepsi_placement | pepsi_chosen |
---|---|---|
14 | 1 | 1 |
51 | 1 | 0 |
80 | 0 | 0 |
90 | 0 | 0 |
92 | 0 | 0 |
pepsi_chosen | no_placement | placement |
---|---|---|
0 | 57 | 37 |
1 | 43 | 63 |
Chi2(1) | p | Cramer’s V (adj.) | Cramers_v_adjusted CI |
---|---|---|---|
4.14 | 0.042 | 0.17 | (0.00, 1.00) |
Parameter1 | Parameter2 | r | 95% CI | p |
---|---|---|---|---|
pepsi_placement | pepsi_chosen | 0.20 | (0.01, 0.38) | 0.042 |
Alternative hypothesis: true correlation is not equal to 0
Parameter1 | Parameter2 | tau | z | p |
---|---|---|---|---|
pepsi_placement | pepsi_chosen | 0.20 | 2.03 | 0.043 |
Alternative hypothesis: true tau is not equal to 0
Difference | 95% CI | t(103) | p | d |
---|---|---|---|---|
-0.20 | (-0.39, -0.01) | -2.06 | 0.042 | -0.41 |
Parameter | Sum_Squares | df | Mean_Square | F | p | Eta2 |
---|---|---|---|---|---|---|
pepsi_placement | 1.03 | 1 | 1.03 | 4.23 | 0.042 | 0.04 |
Residuals | 25.10 | 103 | 0.24 |
“The only formula you’ll ever need.” Andy Field
\[ outcome_i = Model_i + error_i \]
Frage: Wenn wir nur einen Schätzwert \(a\) für \(Y\) haben, welcher ist der beste Schätzer?
\[ Y_i = a + \epsilon_i \]
Antwort: Mittelwert \(\bar{x}\) als der beste Modellkoeffizient im Nullmodell
Problem: damit erklärt das Modell aber nichts, es fehlt eine Prädiktorvariable \(X\)
\[ Y_i = b_0 + b_1 X_i + \epsilon_i \]
\[ Y_i = b_0 + b_1 X_1 + + b_2 X_2 + b_3 X_3 + ... + \epsilon_i \]
Parameter | Coefficient | 95% CI | t(103) | p | Std. Coef. | Fit |
---|---|---|---|---|---|---|
(Intercept) | 0.43 | (0.29, 0.57) | 6.24 | < .001 | 0.00 | |
pepsi placement | 0.20 | (0.01, 0.39) | 2.06 | 0.042 | 0.20 | |
AICc | 153.96 | |||||
R2 | 0.04 | |||||
R2 (adj.) | 0.03 | |||||
Sigma | 0.49 |
Andy Field. The General Linear Model. https://www.youtube.com/watch?v=7cSArk7tU4w
Auty, S., & Lewis, C. (2004). Exploring children’s choice: The reminder effect of product placement. Psychology & Marketing, 21(9), 697-713.
glm.R
STRG+ENTER
bzw. CMD+ENTER
)