Parameter | Coefficient | 95% CI | t(2101) | p | Std. Coef. | Fit |
---|---|---|---|---|---|---|
(Intercept) | 3.91 | (3.39, 4.43) | 14.63 | < .001 | 0.00 | |
age | -0.03 | (-0.04, -0.01) | -4.62 | < .001 | -0.10 | |
AICc | 11414.93 | |||||
R2 | 0.01 | |||||
R2 (adj.) | 0.01 | |||||
Sigma | 3.65 |
Mittelwertvergleiche mit kategoriellen Prädiktoren
Sommersemester 2024
Parameter | Coefficient | 95% CI | t(2101) | p | Std. Coef. | Fit |
---|---|---|---|---|---|---|
(Intercept) | 3.91 | (3.39, 4.43) | 14.63 | < .001 | 0.00 | |
age | -0.03 | (-0.04, -0.01) | -4.62 | < .001 | -0.10 | |
AICc | 11414.93 | |||||
R2 | 0.01 | |||||
R2 (adj.) | 0.01 | |||||
Sigma | 3.65 |
Zugehörigkeit | Gruppe B | Gruppe C | Gruppe D |
---|---|---|---|
Gruppe A | 0 | 0 | 0 |
Gruppe B | 1 | 0 | 0 |
Gruppe C | 0 | 1 | 0 |
Gruppe D | 0 | 0 | 1 |
Zugehörigkeit | Gruppe A | Gruppe B | Gruppe C |
---|---|---|---|
Gruppe D | 0 | 0 | 0 |
Gruppe A | 1 | 0 | 0 |
Gruppe B | 0 | 1 | 0 |
Gruppe C | 0 | 0 | 1 |
Coming across news on social network sites (SNS) largely depends on news-related activities in one’s network. Although there are many different ways to stumble upon news, limited research has been conducted on how distinct news curation practices influence users’ intention to consume encountered content. In this mixed-methods investigation, using Facebook as an example, we first examine the results of an experiment (study 1, n = 524), showing that getting tagged in comments to news posts promotes news consumption the most.
modus | rw | modus_tag |
---|---|---|
Tag | 5 | 1 |
Chronik | 2 | 0 |
Post | 3 | 0 |
DM | 1 | 0 |
Chronik | 1 | 0 |
Chronik | 2 | 0 |
Variable | Summary |
---|---|
Mean rw (SD) | 3.04 (1.30) |
modus | n | M | SD |
---|---|---|---|
Chronik | 141 | 2.88 | 1.20 |
Post | 97 | 2.79 | 1.25 |
Tag | 152 | 3.51 | 1.33 |
DM | 134 | 2.84 | 1.28 |
Difference | 95% CI | t(522) | p | d |
---|---|---|---|---|
-0.67 | (-0.91, -0.43) | -5.51 | < .001 | -0.48 |
Parameter | Coefficient | 95% CI | t(522) | p | Std. Coef. | Fit |
---|---|---|---|---|---|---|
(Intercept) | 2.84 | (2.71, 2.97) | 43.26 | < .001 | 0.00 | |
modus tag | 0.67 | (0.43, 0.91) | 5.51 | < .001 | 0.23 | |
AICc | 1738.89 | |||||
R2 | 0.05 | |||||
R2 (adj.) | 0.05 | |||||
Sigma | 1.27 |
Parameter | Sum_Squares | df | Mean_Square | F | p | Eta2 |
---|---|---|---|---|---|---|
modus | 49.12 | 3 | 16.37 | 10.17 | < .001 | 0.06 |
Residuals | 837.19 | 520 | 1.61 |
Parameter | Coefficient | 95% CI | t(520) | p | Std. Coef. | Fit |
---|---|---|---|---|---|---|
(Intercept) | 2.88 | (2.67, 3.09) | 26.95 | < .001 | -0.12 | |
modus (Post) | -0.09 | (-0.41, 0.24) | -0.51 | 0.609 | -0.07 | |
modus (Tag) | 0.63 | (0.34, 0.93) | 4.27 | < .001 | 0.49 | |
modus (DM) | -0.04 | (-0.34, 0.26) | -0.28 | 0.776 | -0.03 | |
AICc | 1742.69 | |||||
R2 | 0.06 | |||||
R2 (adj.) | 0.05 | |||||
Sigma | 1.27 |
Parameter | Coefficient | 95% CI | t(520) | p | Std. Coef. | Fit |
---|---|---|---|---|---|---|
(Intercept) | 2.84 | (2.62, 3.05) | 25.87 | < .001 | -0.15 | |
modus dm (Chronik) | 0.04 | (-0.26, 0.34) | 0.28 | 0.776 | 0.03 | |
modus dm (Post) | -0.04 | (-0.37, 0.29) | -0.25 | 0.804 | -0.03 | |
modus dm (Tag) | 0.68 | (0.38, 0.97) | 4.50 | < .001 | 0.52 | |
AICc | 1742.69 | |||||
R2 | 0.06 | |||||
R2 (adj.) | 0.05 | |||||
Sigma | 1.27 |
term | contrast | estimate | std.error | statistic | p.value | s.value |
---|---|---|---|---|---|---|
modus | DM - Chronik | -0.04 | 0.15 | -0.28 | 1 | 0.00 |
modus | DM - Post | 0.04 | 0.17 | 0.25 | 1 | 0.00 |
modus | DM - Tag | -0.68 | 0.15 | -4.50 | 0 | 14.62 |
modus | Post - Chronik | -0.09 | 0.17 | -0.51 | 1 | 0.00 |
modus | Tag - Chronik | 0.63 | 0.15 | 4.27 | 0 | 13.07 |
modus | Tag - Post | 0.72 | 0.16 | 4.36 | 0 | 13.66 |
Bender, R., & Lange, S. (2001). Adjusting for multiple testing—when and how?. Journal of clinical epidemiology, 54(4), 343-349.
Davis, M. J. (2010). Contrast coding in multiple regression analysis: Strengths, weaknesses, and utility of popular coding structures. Journal of data science, 8(1), 61-73.
Kümpel, A. S. (2019). Getting tagged, getting involved with news? A mixed-methods investigation of the effects and motives of news-related tagging activities on social network sites. Journal of Communication, 69(4), 373-395.
Wir vergleichen die Tanzbarkeit (danceability) und musikalische Stimmung (valence) der Top 10-Hits über 4 Dekaden (1990er bis 2020er) auf Basis von Billboard und Spotify-Daten.
Beide Variablen sind von 0 (niedrig) - 100 (hoch) skaliert. Die Mittelwerte und Fallzahlen pro Dekade sind wie folgt:
decade | danceability | valence | n |
---|---|---|---|
1990s | 64.72 | 56.09 | 588 |
2000s | 67.34 | 57.98 | 558 |
2010s | 67.31 | 51.93 | 499 |
2020s | 66.10 | 51.38 | 69 |
Interpretieren sie die Ergebnisse der beiden linearen Modelle, in denen die Mittelwertunterschiede getestet werden, Zeile für Zeile.
Welche Dekaden werden nicht miteinander verglichen, d.h. für diese bräuchten wir Post-Hoc Vergleiche?
Lösung bitte bis 29.05.2024, 12 Uhr in Moodle eintragen.
danceability | |||
Predictors | Coefficient (B) | SE (B) | p |
(Intercept) | 64.72 | 0.59 | <0.001 |
decade [2000s] | 2.62 | 0.85 | 0.002 |
decade [2010s] | 2.59 | 0.88 | 0.003 |
decade [2020s] | 1.38 | 1.83 | 0.452 |
valence | ||
Predictors | Coefficient (B) | 95% CI (B) |
(Intercept) | 51.38 | 45.97 – 56.79 |
decade [1990s] | 4.71 | -1.01 – 10.43 |
decade [2000s] | 6.60 | 0.87 – 12.34 |
decade [2010s] | 0.56 | -5.22 – 6.33 |