danceability | |||
Predictors | Coefficient (B) | SE (B) | p |
(Intercept) | 64.72 | 0.59 | <0.001 |
decade [2000s] | 2.62 | 0.85 | 0.002 |
decade [2010s] | 2.59 | 0.88 | 0.003 |
decade [2020s] | 1.38 | 1.83 | 0.452 |
Modellvorhersagen und -visualisierung
Sommersemester 2024
Interpretieren sie die Ergebnisse der beiden linearen Modelle, in denen die Mittelwertunterschiede getestet werden, Zeile für Zeile.
Welche Dekaden werden nicht miteinander verglichen, d.h. für diese bräuchten wir Post-Hoc Vergleiche?
danceability | |||
Predictors | Coefficient (B) | SE (B) | p |
(Intercept) | 64.72 | 0.59 | <0.001 |
decade [2000s] | 2.62 | 0.85 | 0.002 |
decade [2010s] | 2.59 | 0.88 | 0.003 |
decade [2020s] | 1.38 | 1.83 | 0.452 |
valence | ||
Predictors | Coefficient (B) | 95% CI (B) |
(Intercept) | 51.38 | 45.97 – 56.79 |
decade [1990s] | 4.71 | -1.01 – 10.43 |
decade [2000s] | 6.60 | 0.87 – 12.34 |
decade [2010s] | 0.56 | -5.22 – 6.33 |
Parameter | Coefficient | 95% CI | t(987) | p | Std. Coef. | Fit |
---|---|---|---|---|---|---|
(Intercept) | 0.46 | (0.09, 0.83) | 2.45 | 0.014 | -0.13 | |
Gender (female) | -0.51 | (-0.65, -0.37) | -6.96 | < .001 | -0.37 | |
Age | 0.02 | (0.02, 0.03) | 8.48 | < .001 | 0.23 | |
Education (Middle) | 0.35 | (0.13, 0.56) | 3.15 | 0.002 | 0.26 | |
Education (High) | 0.60 | (0.38, 0.82) | 5.42 | < .001 | 0.44 | |
Political interest | 0.20 | (0.18, 0.23) | 14.76 | < .001 | 0.40 | |
AICc | 3021.49 | |||||
R2 | 0.35 | |||||
R2 (adj.) | 0.34 | |||||
Sigma | 1.10 |
Gender | Age | Education | Political_interest | PK | Predicted_PK |
---|---|---|---|---|---|
female | 45 | Middle | 3 | 2 | 1.91 |
female | 59 | High | 7 | 4 | 3.29 |
female | 52 | High | 7 | 4 | 3.13 |
female | 23 | High | 4 | 1 | 1.88 |
female | 23 | High | 3 | 1 | 1.67 |
female | 36 | Middle | 0 | 2 | 1.10 |
Gender | Age | Education | Political_interest | PK | fit | lwr | upr |
---|---|---|---|---|---|---|---|
female | 45 | Middle | 3 | 2 | 1.91 | 1.76 | 2.05 |
female | 59 | High | 7 | 4 | 3.29 | 3.15 | 3.42 |
female | 52 | High | 7 | 4 | 3.13 | 3.01 | 3.26 |
Gender | Age | Education | Political_interest | PK | fit | lwr | upr |
---|---|---|---|---|---|---|---|
female | 45 | Middle | 3 | 2 | 1.91 | -0.26 | 4.08 |
female | 59 | High | 7 | 4 | 3.29 | 1.12 | 5.46 |
female | 52 | High | 7 | 4 | 3.13 | 0.96 | 5.30 |
id | Age | Gender | Political_interest | PK | Predicted_PK |
---|---|---|---|---|---|
1 | 45 | female | 3 | 2 | 1.91 |
1 | 45 | male | 3 | 2 | 2.42 |
2 | 59 | female | 7 | 4 | 3.29 |
2 | 59 | male | 7 | 4 | 3.80 |
3 | 52 | female | 7 | 4 | 3.13 |
3 | 52 | male | 7 | 4 | 3.64 |
Gender | estimate | std.error | conf.low | conf.high |
---|---|---|---|---|
female | 2.78 | 0.05 | 2.68 | 2.88 |
male | 3.29 | 0.05 | 3.19 | 3.38 |
id | Age | Gender | Political_interest | PK | Predicted_PK |
---|---|---|---|---|---|
1 | 18 | female | 3 | 2 | 1.31 |
1 | 40 | female | 3 | 2 | 1.80 |
1 | 65 | female | 3 | 2 | 2.35 |
2 | 18 | female | 7 | 4 | 2.38 |
2 | 40 | female | 7 | 4 | 2.87 |
2 | 65 | female | 7 | 4 | 3.42 |
id | Age | Gender | Political_interest | PK | Predicted_PK |
---|---|---|---|---|---|
1 | 19 | female | 3 | 2 | 1.33 |
1 | 44 | female | 3 | 2 | 1.89 |
1 | 56 | female | 3 | 2 | 2.15 |
1 | 65 | female | 3 | 2 | 2.35 |
1 | 71 | female | 3 | 2 | 2.48 |
2 | 19 | female | 7 | 4 | 2.40 |
2 | 44 | female | 7 | 4 | 2.96 |
2 | 56 | female | 7 | 4 | 3.22 |
Age | estimate | std.error | conf.low | conf.high |
---|---|---|---|---|
19 | 2.29 | 0.10 | 2.11 | 2.48 |
44 | 2.85 | 0.04 | 2.76 | 2.93 |
56 | 3.11 | 0.04 | 3.04 | 3.18 |
65 | 3.31 | 0.05 | 3.22 | 3.40 |
71 | 3.44 | 0.06 | 3.33 | 3.56 |
Age | Gender | estimate | std.error | conf.low | conf.high |
---|---|---|---|---|---|
19 | female | 2.03 | 0.10 | 1.84 | 2.22 |
19 | male | 2.54 | 0.11 | 2.33 | 2.75 |
44 | female | 2.58 | 0.05 | 2.47 | 2.69 |
44 | male | 3.09 | 0.06 | 2.98 | 3.20 |
56 | female | 2.84 | 0.05 | 2.74 | 2.95 |
56 | male | 3.35 | 0.05 | 3.26 | 3.45 |
65 | female | 3.04 | 0.06 | 2.92 | 3.17 |
65 | male | 3.55 | 0.06 | 3.44 | 3.66 |
71 | female | 3.18 | 0.07 | 3.03 | 3.32 |
71 | male | 3.69 | 0.06 | 3.56 | 3.81 |
Replizieren sie eine Regressionsanalyse aus van Erkel & van Aelst (2021) mit R oder SPSS oder anderer Software
Studierende mit gerader Matrikelnummer: Tabelle 5
Studierende mit ungerader Matrikelnummer: Tabelle 6
Der Datensatz ist in data/VanErkel_vanAelst2021.sav
und enthält alle nötigen Variablen.
Machen sie einen Screenshot der Regressionstabelle als PNG oder JPG und laden Sie in in Moodle hoch.
Deadline: 19.06.2024